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Abstract
The elemental composition of chemical elements can vary between healthy and diseased tissues, providing 
essential insights into metabolic processes in physiological and diseased states. This study aimed to evaluate the 
calcium (Ca) and phosphorus (P) levels in the bones of rats with/without streptozotocin-induced diabetes and/or 
exposure to infrasound. X-ray fluorescence spectroscopy was used to determine the concentrations of Ca and P in 
Wistar rat tibiae samples.

The results showed a significant decrease in bone P concentration in streptozotocin-induced diabetic rats 
compared to untreated animals. Similarly, the Ca/P ratio was higher in the streptozotocin-induced diabetic group. 
No significant differences were observed in bone Ca concentration between the studied groups or between 
animals exposed and not exposed to infrasound.

Moreover, streptozotocin-induced diabetic rats had lower bone P concentration but unaltered bone Ca 
concentration compared to untreated rats. Infrasound exposure did not impact bone Ca or P levels. The reduced 
bone P concentration may be associated with an increased risk of bone fractures in diabetes.
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Introduction
Phosphorus and calcium concentrations can vary 
between healthy and diseased individuals, affecting met-
abolic processes and pathophysiology in tissues such as 
bone [1–3]. However, studying individual elements in 
isolation can miss potential interactions between them 
[1]. Univariate methods are often used to compare 
healthy and diseased tissues or to correlate elements, but 
this can result in an inability to detect their effects [4, 5].

Alterations in the metabolism of glucose can be harm-
ful to bone health, and both type 1 and type 2 diabetes 
mellitus have an increased risk of osteoporotic fracture as 
chronic complication [6, 7]. Bone plays a crucial role in 
regulating intermediary metabolism, making it a patho-
physiological factor in the disease process itself [8, 9].

Infrasound exposure is increasing worldwide and this 
stimulus may affect bone remodeling and mineraliza-
tion, possibly by stimulating the growth and secretion 
activity of osteoblast-like cells and promoting osteogen-
esis [10–15]. Little is known about the effects of diabetes 
and infrasound on elemental bone composition and their 
potential interaction.

Therefore, the aim of this study is to evaluate the 
elemental composition of Ca and P in the bone of 
streptozotocin-induced glucose-intolerant and/or infra-
sound-exposed rats using X-ray fluorescence spectros-
copy [1, 2, 4, 5, 8, 16–18], using multivariate methods.

Materials and methods
Animal experiments
This study adheres to the 3Rs principles [19] and shares 
resources with a separate investigation of the effects of 
infrasound on pancreatic function and morphology, using 
the study design and sample size estimation previously 
described due to the expected effects [20]. Animal exper-
iments were authorized by the Ethics Committee of Insti-
tuto Universitário Egas Moniz, the Portuguese National 
Authority for Animal Health (project nº 204/2017), and 
the Animal Welfare Body (ORBEA) of School of Medi-
cine and Biomedical Sciences, ICBAS, University of 
Porto (Portugal), under protocol nº 204/2017. The experi-
mental design complies with the PREPARE guidelines 
[21], and all animals were handled by FELASA Category 
C-accredited researchers and housed in a certified animal 
facility. The EU Commission on Animal Protection for 
Experimental and Scientific Purposes (2010/63/EU) and 
Portuguese legislation (DL 113/2013) were followed for 
animal care. This research followed the ARRIVE guide-
lines [22].

Animals
For this research, 133 male wild-type Wistar rats, 
aged 11 weeks, and weighing 375.95  g ± 18.29  g, 
were obtained from Charles River Laboratories 

(Saint-Germain-sur-l’Arbresle, France). All animals were 
male to avoid uncertainty in the results, due to sex-
induced differences. The Preyer reflex test was used to 
evaluate auditory function in all animals [23], so that this 
factor would not act as a confounder. Rats were housed 
individually or in pairs in standard cages with unre-
stricted access to water and standard commercial rat 
chow under a 12-hour light/dark cycle. Housing condi-
tions were maintained unchanged throughout the experi-
ment. After a one-week acclimatization period, rats were 
randomly assigned to G1 (no treatment) or G2 (strepto-
zotocin-induced diabetes) using open access online soft-
ware [24].

Streptozotocin-induced diabetes
Initially, half of the animals randomly assigned were fed 
a high-fat diet (D12492 diet, Research Diets Inc., USA) 
for 3 weeks, comprising 60% fats, 20% carbohydrates 
and 20% protein (5.21 kcal/g energy density), compared 
to the standard rat chow (D10001 diet, Research Diets 
Inc., USA), which had 12% fats, 67% carbohydrates, and 
21% protein (3.86  kcal/g energy density). Following the 
high-fat diet, rats were injected intraperitoneally with a 
low dose of streptozotocin (STZ, Sigma-Aldrich, USA) 
40 mg/kg in a sodium citrate buffer 50 mM, pH 4.4, after 
fasting for 6–8  h, as described by Furman (2015) [25]. 
In this group of animals, glucose intolerance was con-
firmed using an intraperitoneal glucose tolerance test 
(glycemia ≥ 140 mg/dL at 2 h), following Ayala et al. [26]. 
Then, animals were randomly assigned to one of four 
groups: G1s (no treatment, silence), G1n (no treatment, 
infrasound), G2s (glucose intolerance, silence), and G2n 
(glucose intolerance, infrasound) groups. The animals 
from each of the four groups were sacrificed at 1, 6, or 12 
weeks. The animals were chosen randomly for sacrifice at 
each timepoint.

Infrasound exposure
In the two groups exposed to infrasound, this expo-
sure was implemented as previously described [27]. The 
enclosures were located in a soundproofed room with 
a noise generator consisting of a subwoofer, which pro-
duced a white noise signal filtered to generate high-inten-
sity infrasound. The acoustic pressure waveform was 
examined, and the results showed an average sound pres-
sure level of 120 dB in the 2–20 Hz range with a tolerance 
of ± 3 dB in a 30-second timeframe in the entire compart-
ment. The groups not exposed to infrasound were held in 
a similar, quiet room.

Tissue and blood samples
To evaluate the evolution of glucose intolerance with 
infrasound factor compared to silence, glucose intol-
erance tests were performed after 1, 6, and 12 weeks of 
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noise exposure using intraperitoneal administration, as 
described by Ayala et al. [26]. Glycemia time courses and 
area under the curve (AUC) were recorded, and plasma 
insulin levels were measured before and 30 min after glu-
cose injection using a commercial ELISA kit [26]. Sacri-
fice by euthanasia was performed using carbon dioxide, 
and both hind limbs were manually removed for tissue 
sampling. Muscle, cartilage, periosteum, and tibiae sam-
ples were lyophilized for 48 h at -50 °C to minimize water 
content and optimize determination of elements of inter-
est. Samples were then ground into an average particle 
size of 180 μm and kept cool, with masses ranging from 
0.7149 to 1.1910 g.

X-ray fluorescence spectroscopy
Tibiae bone samples were analysed using Wavelength 
Dispersive X-ray Fluorescence Spectrometry (WDXRF), 
a direct method with high sensitivity and detection lim-
its [34]. Ca and P concentrations were determined using 
a 4  kW X-ray fluorescence spectrometer (S4 Pioneer, 
Bruker AXS) equipped with a Rh X-ray tube and a 34 mm 
diameter collimator mask. Polyethylene cups (35.8  mm 
diameter) with a 4  μm Prolene® film were used to hold 
the bone powder sample. Calibration was done with 
synthetic standards and bone matrix effects were simu-
lated using a mixture of calcium carbonate and disodium 
hydrogen phosphate. Validation followed ICH guidelines 
[28] for specificity, linearity, detection and quantification 
limits, precision, and accuracy. Detection limits were 
estimated at 0.6% for Ca and 0.2% for P, and intra-assay 
precision was below 5% for both elements. Accuracy was 
established by measuring certified reference material 
(Caprine Bone NYS RM 05 − 01/ 05 − 04).

Statistics
As elemental concentrations and ratios were determined 
in the same animals, a multivariate approach was initially 
considered due to potential intercorrelations between 
the variables. However, the Kaiser-Meyer-Olkin measure 

(0.257) indicated that this was unnecessary for our data. 
Therefore, univariate general linear models (GLM) were 
used to evaluate the effects of exposure and metabolic 
condition on bone composition, after selecting appropri-
ate covariates. Normality and homoscedasticity assump-
tions were checked using the Shapiro-Wilk and Levene 
tests, respectively. The Statistical Package for Social Sci-
ences (SPSS; IBM SPSS Statistics. Version 26.0, Armonk, 
NY: IBM Corp.) was employed for statistical analysis. The 
Pearson correlation coefficient was used to evaluate cor-
relations between variables. Statistical significance was 
set at 5%.

Results
To account for the effects of concomitant variables in the 
relationships between infrasound exposure and meta-
bolic condition and bone composition, covariates were 
considered, including animal age, protocol duration, 
body weight, and AUC from OGTT. Insulin data were 
incomplete due to limited plasma samples, and AUC at 
baseline was considered as a covariate for Ca and P con-
centrations in bone. Normality and homogeneity of vari-
ances were violated for P concentrations, but GLM was 
still considered valid. The interaction between the covari-
ate and main factors was non-significant. Table  1 pres-
ents descriptive statistics of bone composition variables 
for animals with complete records (n = 86) [29]. 

For Ca concentrations, the GLM approach found no 
interaction between main factors (p = 0.272) and no sig-
nificant effects of exposure to infrasound (p = 0.708) or 
streptozotocin-induced diabetes (p = 0.331). Regarding P 
concentrations, the same approach found no interaction 
between main factors (p = 0.765) and no effect of expo-
sure to infrasound (p = 0.671), but significantly lower P 
concentrations were observed in streptozotocin-induced 
glucose intolerant animals (p = 0.040) compared to non-
glucose intolerant rats, regardless of exposure (Fig. 1). No 
significant effects were found for Ca/P ratios in bone due 
to interaction between main factors (p = 0.194) or to main 

Table 1  Mean and SD of Ca, P and Ca/P in bone of animals with different status of glucose metabolism (G1/G2: no treatment/glucose 
intolerance) and infrasound exposure (Gs/Gn: silence/infrasound), with G1s (no treatment, silence), G1n (no treatment, infrasound), G2 
(glucose intolerance): G2s (glucose intolerance, silence), and G2n (glucose intolerance, infrasound)
Group Ca (%) P (%) Ca/P

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation N
G1s 23.44 1.80 7.61 0.76 3.09 0.25 24
G1n 23.90 1.51 7.63 0.76 3.15 0.28 22
G2s 22.87 1.51 7.02 0.83 3.29 0.29 24
G2n 22.62 1.54 7.15 0.79 3.19 0.29 16
G1 ( G1s + G1n) 23.66 a 1.66 7.62 b 0.75 3.12 c 0.26 46
G2 ( G2s + G2n) 22.77 a 1.51 7.07 b 0.81 3.25 c 0.29 40
Gs ( G1s + G2s) 23.15 d 1.67 7.32 e 0.84 3.19 f 0.28 48
Gn ( G1n + G2n) 23.36 d 1.63 7.43 e 0.80 3.17 f 0.28 38
Significance of Mean differences between G1 and G2 groups: (a) p = 0.331; (b) p = 0.040; (c) p = 0.066. Significance of Mean differences between Gs and Gn groups: (d) 
p = 0.708; (e) p = 0.671; (f) p = 0.787
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factors, although higher ratios in the streptozotocin-
induced glucose intolerance group were suggested but 
not statistically supported (p = 0.066).

Insulin, involved in controlling energy metabolism and 
bone mass [6], was considered in a subgroup of 52 ani-
mals with complete records including insulin at sacrifice, 
to assess its potential effects on the relationships between 
streptozotocin-induced glucose intolerance, infrasound 
exposure, and bone composition. Insulin was signifi-
cantly associated with bone variables, showing an inverse 
correlation with P concentration (p = 0.003, r = -0.402) 
and a positive correlation with Ca/P (p < 0.001, r = 0.468). 
However, controlling for insulin does not change the 
significance of the effects of diabetes and exposure on 
bone concentrations and ratios observed in the larger 
subgroup.

Discussion
Our study analysed Ca and P levels in rat bones exposed 
to streptozotocin treatment and/or infrasound. Findings 
indicate that glucose intolerance lowers P concentration 
and raises Ca/P ratio. There were no variations in bone 
Ca, P, or Ca/P ratio between infrasound-exposed and 
non-exposed rats.

Phosphorus deficiency in type 2 diabetes may sug-
gest a glucose intolerance-induced phosphorus metabo-
lism disorder, as serum phosphorus levels are known to 
decrease in these patients [30]. Our study found low bone 
phosphorus concentration, indicating that bones may 
release phosphorus to compensate for low serum levels, 

supporting the idea of altered phosphorus metabolism 
in glucose intolerance. Furthermore, hyperglycaemia 
significantly decreases parathyroid hormone levels [31], 
both of which independently contribute to reduced bone 
remodelling and quality [32].

Our investigation found no significant differences 
in bone calcium concentrations between the studied 
groups.

The low bone phosphorus and altered Ca/P ratio found 
in our study may be a predisposing factor for bone fra-
gility in glucose intolerance and subsequently in diabetes. 
However, the importance of each variable to the clinical 
outcome situation is still uncertain [7].

Long-term exposure to industrial noise is known to 
disturb biological systems, and infrasound (< 20  Hz) is 
prevalent in the acoustic spectrum of industrial settings, 
but its effects on bone are still unknown [33]. Vibra-
tions impact the function of osteoblasts and osteoclasts, 
reducing bone resorption and stimulating bone growth 
[12]. Exposure to vibration induced by infrasound may 
facilitate osteogenesis and fracture healing in vivo due to 
mechanical stimulation and increased activity of the bone 
neuro-osteogenic network [15]. The present study indi-
cates that the streptozotocin-induced glucose intolerance 
did not affect the concentration of Ca, a major determi-
nant of bone mass. In view of the spectrum of deleteri-
ous effects of diabetes on bone micro-architecture, the 
fact that bone Ca concentrations remained can specula-
tively be attributed to infrasound exposure, which some-
how attenuated the bone effects of glucose intolerance. 

Fig. 1  Profile plot of P concentration on bone of animals with different status of glucose metabolism and infrasound exposure, considered in GLM.
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Therefore, we believe the infrasound exposure may have 
had a beneficial effect in the bone maintenance.

Changes in ion homeostasis in diabetic patients may be 
associated with increased morbidity and mortality [34].

A limitation of our study is the lack of full assessment 
methods of glucose homeostasis, such as insulin toler-
ance tests and islet function tests. These tests would offer 
a more complete picture of the metabolic status of the 
animals and further illustrate the deleterious effects of 
high-intensity infrasound exposure.

With this research we intend to investigate the effects 
of exposure to infrasonic noise and glucose intolerance 
on the bone composition of Wistar rats. Our results sug-
gest that exposure to infrasonic noise may play a pro-
tective role in bone metabolism in the case of glucose 
intolerance. However, more studies are needed to clarify 
the effects of glucose intolerance and infrasound on bone 
metabolism.

Conclusion
No differences in bone Ca were found between infra-
sound-exposed and unexposed animals or between glu-
cose-intolerant non-intolerant animals. However, bone 
P concentrations were lower in glucose-intolerant ani-
mals with no difference between infrasound exposure 
groups. Glucose-intolerant animals had a higher Ca/P 
ratio than non-glucose-intolerant animals with no dif-
ference between infrasound exposure groups. This study 
is the first to describe elemental bone concentrations in 
glucose-intolerant animals exposed to infrasound, and 
the change in Ca/P ratio in glucose-intolerant animals. 
The observed low bone phosphorus may contribute to 
the bone fragility in glucose-intolerance or even diabe-
tes, but further research is necessary to understand its 
mechanism.
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