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Abstract 

Immune checkpoint blockade (ICB) therapy holds promise for bringing long-lasting clinical gains for the treatment 
of cancer. However, studies show that only a fraction of patients respond to the treatment. In this regard, it is valu-
able to develop gene expression signatures based on RNA sequencing (RNAseq) data and machine learning meth-
ods to predict a patient’s response to the ICB therapy, which contributes to more personalized treatment strategy 
and better management of cancer patients. However, due to the limited sample size of ICB trials with RNAseq data 
available and the vast number of candidate gene expression features, it is challenging to develop well-performed 
gene expression signatures. In this study, we used several published melanoma datasets and investigated approaches 
that can improve the construction of gene expression-based prediction models. We found that merging datasets 
from multiple studies and incorporating prior biological knowledge yielded prediction models with higher predic-
tive accuracies. Our finding suggests that these two strategies are of high value to identify ICB response biomarkers 
in future studies.
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Introduction
Immunotherapy has emerged recently as a promising 
and viable treatment option for many cancer patients [1]. 
Among multiple types of immunotherapy, the immune 
checkpoint blockade (ICB) therapy, which aims at block-
ing the interaction of inhibitory receptors expressed 
on the surface of immune cells [2], has been proved 

applicable in helping the immune system target and 
attack cancer cells [3, 4]. Particularly, ICB can provide 
exceptional clinical gains in the treatment of a hand-
ful cancer, melanoma, mostly because the spontaneous 
regression of melanoma is closely related to the immune 
response [5, 6]. Despite the success of ICB therapy in the 
treatment of melanoma, however, recent studies showed 
that only around one-third of patients would respond to 
the ICB therapy [7]. The reason for the heterogeneous 
response still remains unclear and requires further inves-
tigations [1, 8, 9].

It is therefore desired to develop biomarkers that can 
predict patient’s response to ICB therapy, which will con-
tribute to better stratification of patients to maximize 
therapeutic benefit. Previous studies showed that tumor 
mutational burden, microsatellite instability are predic-
tive biomarkers [10–12]. Gene expression signatures have 
also been demonstrated as valuable for predicting ICB 
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treatment response in melanoma patients [13–17]. How-
ever, the sample sizes of ICB clinical studies that have 
gene expression profiling data available are very limited 
[13]. Table 1 listed three published studies, each of which 
had less than 60 patients. The lack of large scale data-
sets makes it challenging to construct reliable prediction 
models. Although an alternative approach of using data 
from patients without ICB treatment to develop immune 
response signatures and transfering the results to predict 
ICB treatment response has been proposed [13, 14], it is 
still highly desired if the signatures could be directly built 
on patients with ICB treatment. Further, gene expression 
profiling technologies, such as RNA-sequencing (RNA-
seq), are powerful to simultaneously quantify more than 
10,000 genes’ expression levels. It is challenging to iden-
tify informative gene features and their complex rela-
tionships to build accurate prediction models, especially 
when the sample size is small.

In this paper, we investigated the potential of the fol-
lowing two strategies to enhance the development of 
gene expression signatures for ICB treatment effect pre-
diction in melanoma patients. The first strategy is to 
merge data from different ICB clinical studies. Merging 
datasets has been shown as a viable approach to increase 
the sample size and thus improve the power of biomarker 
development in various biomedical applications [18, 19]. 
We explored the potential benefit of merging three pub-
lished datasets [15–17] for the prediction of ICB treat-
ment response. The second strategy is to leverage prior 
biological knowledge to use more informative and bio-
logically relevant features for the construction of pre-
diction models. It has been suggested that expressions 
of immune checkpoint genes and their interactions are 
relevant to tumor response to ICB therapy [13, 14]. We 
explored whether focusing on pairwise relation features 
among these immune checkpoint genes, as suggested by 
[14], could improve feature selection and prediction per-
formance of the models.

Methods
Study design
Figure 1 presents an overview of our study design. Firstly, 
using each individual RNA-seq dataset, we leveraged 
prior biological knowledge and focused on immune 
checkpoint genes, where the pairwise relation of those 
genes were considered as candidate features for sub-
sequent prediction model development. Secondly, we 
merged individual datasets to increase the sample size, 
where the presence of batch effect was assessed. Thirdly, 
based on the merged data, we built prediction models 
based on three commonly used machine learning algo-
rithms, i.e. Random forest [20], Least absolute shrink-
age and selection operation (LASSO) [21], and XGBoost 

[22]. Fourthly, we evaluated the performance of predic-
tion models based on the receiver operating characteris-
tic (ROC) curve and area under the curve (AUC) using 
cross-validation. To investigate the power of merg-
ing multiple datasets, we compared AUCs from mod-
els based on the merged dataset versus those based on 
each individual dataset. Besides, in order to investigate 
the benefit of incorporating prior information in feature 
selection, we compared AUCs from models built based 
on features characterizing pairwise relation of immune 
checkpoint genes versus those based on the original 
expression features of all genes.

Datasets
We considered three published melanoma datasets [15–
17] as listed in Table 1. All the datasets we utilized were 
sourced from studies concentrating on the immune treat-
ment of melanoma. Consequently, any additional data-
sets incorporated should also originate from melanoma 
research. For Van Allen et al. and Hugo et al, gene expres-
sion data were provided in the units of fragments per 
kilobase of transcript per million mapped reads (FPKM). 
For Riaz et al., the data were provided in counts. We uni-
formly transformed all the data to the unit of transcripts 
per million (TPM) before our analysis. There were 18,878 
common gene features across the three datasets. The 
total sample size was 125. The detailed information of the 
three datasets is summarized in Table 1.

The response variable was defined to be a binary vari-
able, ’response’ or ’non-response’ to the treatment. 

Fig. 1  The flowchart of this study
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Since the response annotations for each dataset were 
not exactly the same, a standard classification used in 
this study was given following the definition from Aus-
lander paper [14], where ’complete response’, and ’partial 
response’ were classified as ’response’, and ’nonresponse’, 
’progressive disease’, etc. were classified as ’non-response’. 
A patient characteristics table is provided in Additional 
file 1: Appendix C.

Features characterizing pairwise relations of immune 
checkpoint genes
Due to the large number of gene features in one data-
set, we focused on immune checkpoint genes and con-
sidered a similar set of candidate features as in [14]. The 
authors proposed to use the pairwise relations between 
the expressions of immune checkpoint genes as features 
to develop prediction models for immune checkpoint 
blockade therapy. They formed a comprehensive list of 
28 immune checkpoint genes, known for their costimula-
tory or co-inhibitory functions, as documented in previ-
ous studies [23–26]. It is expected that essential immune 
interactions are encapsulated through specific pairwise 
relations of immune checkpoint genes. Among those 
immune checkpoint genes, six genes, i.e. PD-1, PD-L1, 
CTLA-4, CD28, CD80 and CD86, are directly associ-
ated with anti-CTLA-4 and anti-PD-1 blockade thera-
pies [14, 23–27], which are two major types of immune 
checkpoint blockade therapy. Auslander et al. focused on 
pairwise relations containing at least one of the six genes. 
In this paper, we considered a similar set of pairwise rela-
tions. The only difference is that we only included 26 out 
of the 28 gene considered in Auslander et al. [14] because 
the other two genes do not have expression data available 
across all RNA-seq datasets analyzed in our study.

For a gene pair x and y, we define the following expres-
sion function was used:

fx,y(i) = 1 , if expx(i) > expy(i);
fx,y(i) = 0 , otherwise,
where expx(i) and expy(i) denote expressions of x and 

y in sample i. Since we further focused on the gene pairs 
containing at least one of the six genes, i.e. PD-1, PD-L1, 
CTLA-4, CD28, CD80 and CD86, that are directly asso-
ciated with anti-CTLA-4 and anti-PD-1 blockade therapy 
as stated above, we obtained a total of 135 pairs forming 
candidate features for building prediction models.

Data integration
To integrate datasets from different sources, we applied 
the following procedure to integrate datasets from differ-
ent sources. First, we ensured to merge by the common 
genes, and uniformly transformed all the RNA-seq data 
to the unit of TPM. The response variable was also uni-
formly defined across datasets as stated in the above sec-
tion. Next, we calculated the pairwise relations between 
the expressions of immune checkpoint genes. Note that 
the pairwise relation features only consider the order 
of expressions between genes, but not the quantitative 
expression levels. Therefore, it can reduce the impact of 
non-biological experimental variations, i.e. batch effect, 
in the analysis. Finally, we visually assessed the possi-
ble batch effect and outliers in data integration by using 
heatmaps [28, 29]with hierarchical clustering as well as 
UMAP plots [30, 31]

Prediction model building
We considered the following three frequently used statis-
tical/machine learning methods to build models for pre-
dicting response to immune checkpoint blockade therapy 
based on features of the pairwise relations between 
immune checkpoint genes.

Random Forest Random forest is a well established 
ensemble learning algorithm that can be applied for clas-
sification. It is formed by a large amount of individual 
decision trees, and then operates as an ensemble. Ran-
dom forest applies a widespread technique of bagging, or 
called bootstrap aggregating while training the algorithm, 
but it includes implementing an essential modification of 
bagging in order to obtain an ensemble of de-correlated 
trees [20]. The feature selection is reflected in the “Gini 
importance” metric, which serves as an indicator of fea-
ture relevance, offering a comparative ranking of features 
derived as a secondary outcome during the classifier’s 
training process [32, 33]. In our random forest model, 
features are ranked according to their Gini index, with 
the model selecting the highest-ranked features for use. 
Package ’randomForest’ in R (Version: 4.6-14) was used 
in this study.

Lasso Least absolute shrinkage and selection opera-
tion (LASSO) is a well-known method in machine learn-
ing, especially for the datasets that have more number 
of features than number of observations. In regression 

Table 1  Datasets used in the study

Van Allen et al. [15] Hugo et al. [16] Riaz et al. [17]

Accession ID dbGaP phs000452.v2.p1. GEO GSE78220 GEO GSE91061

Number of subjects 42 27 56

Number of genes 57731 25268 20771
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analysis, LASSO can perform feature selection and regu-
larization at the same time, so as to improve the accuracy 
of model prediction performance as well as strengthen 
the interpretability of the obtained model [21]. Lasso 
could also be applied for classification problem. Lasso 
model employs regularization to penalize regression 
coefficients, reducing some to zero. Variables with non-
zero coefficients after this process are chosen for the 
model, aiming to minimize prediction error [21, 34]. The 
function ’glmnet’ in R (Version: 4.1-1) was used for the 
LASSO model building, while setting family to ’binomial’ 
could build classifiers for the binary outcome.

XGBoost XGBoost is an implementation of the gradi-
ent boosted decision tree algorithm. Boosting is also an 
ensemble algorithm that can combine the output of many 
weak classifiers into a strong one. The algorithm enables 
to work on both classification and regression problems. 
XGBoost, which is defined as a scalable end-to-end tree 
boosting system, is a very strong boosting method that 
can be used to build a classifier, and exhibits outstanding 
prediction performance according to recent studies [22]. 
It conducts feature selection by assigning importance 
scores to features based on their contribution to node 
purity and model performance. This process is integrated 
into its training, where an ensemble of decision trees pri-
oritizes more significant features, inherently filtering out 
less relevant ones [22]. The ’xgboost’ package in R (Ver-
sion: 1.4.1.1) allows for applying XGBoost in the classifi-
cation problem in R.

Performance evaluation
The prediction performance of models based on random 
forest [20], LASSO [21] and XGBoost [22] were evalu-
ated and compared by using tenfold cross validation. 
The merged dataset was randomly divided into ten folds. 
Each time, the model was built on a combination of the 
nine folds, and then evaluated on the leave-out fold. The 
ROC and AUC were calculated to measure the predic-
tive accuracy of a prediction model [35]. The whole cross 
validation procedure was replicated 10 times and aver-
aged results were reported. In an ROC curve, the Y-axis 
indicates sensitivity, while the X-axis indicates 1-specific-
ity. Each point on the ROC curve represents a sensitiv-
ity/specificity pair under a given threshold. Therefore, 
the ROC curve provides a comprehensive comparison of 
sensitivity versus specificity over various thresholds for 
predicting binary outcomes. Furthermore, the area under 
the ROC curve serves as an additional metric for evaluat-
ing the overall performance of a prediction model.

The feature selection results of these machine learning 
methods were assessed by calculating the probability of 
each feature being selected, i.e. the proportion of times 
that the feature was included in the prediction model 

based on the tenfold cross validation. The Spearman’s 
correlation coefficient was calculated to measure similar-
ity in feature selection between every two methods [36]. 
The Heatmap and correlation plot were generated to vis-
ualize and compare the results.

Results
Candidate features
Given the extensive number of gene features in RNA-seq 
datasets, our analysis concentrated on immune check-
point genes, aligning with the candidate features out-
lined in the research paper from Auslander et al. [14]. We 
selected 26 immune checkpoint genes, previously iden-
tified in the literature, and present within the RNA-seq 
datasets. Recognizing the co-stimulatory or co-inhibitory 
nature of these genes, we examined the pairwise inter-
actions between their expression levels [14, 23–26]. To 
do this, we utilized indicator functions to compare the 
expression levels of pairs of immune checkpoint genes, 
capturing their intricate relationships. A total of 135 
pairwise relations features were considered as candidate 
features in our analysis.

Data integration
To enhance statistical power, we merged three published 
datasets, i.e. Van Allen et  al. [15], Hugo et  al. [16], and 
Riaz et al. [17] (Table 1), and obtained a combined dataset 
with 135 subjects. We first assessed the batch effect for 
data from different sources. Figure 2A shows the hierar-
chical clustering of samples from those sources based on 
the original gene expression data. It is clear that samples 
from the same source were clustered together, suggesting 
the presence of batch effect. In contrast, Fig.  2B shows 
the hierarchical clustering of samples based on the 135 
features characterizing the pairwise relations of immune 
checkpoint genes. Samples from different sources were 
intermixed. Thus, by focusing on those pairwise relations 
features, the batch effect was minimized. This is likely 
due to the fact that pairwise-relation features focus on 
the relative orders between expressions of pairs of genes. 
Such information is more robust against batch effect 
compared to the original gene expression levels. We also 
generated UMAP plots on the original features as well as 
pairwise relation features, see Additional file 1: Appendix 
B. Those UMAP plots show that samples from different 
batches came much closer when considering the pair-
wise relation features, as compared to the original gene 
expression features. In addition, the UMAP based on the 
pairwise relation features did not indicate the presence of 
outliers because there was no subject that was far away 
from all other subjects.
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Model prediction results
We applied three frequently used statistical/machine 
learning methods, including random forest [20], least 
absolute shrinkage and selection operation (LASSO) [21], 
and XGBoost [22], to build prediction models. Figure  3 
presents the ROC curves and AUCs of the prediction 
models built by the above-mentioned machine learn-
ing methods based on tenfold cross validation. Random 
forest, and LASSO both had AUCs above 0.7, providing 

good predictions of the immune response. The XGBoost 
had a lower AUC of 0.667. The difference in prediction 
performance across methods is likely due to different 
feature selection or model building strategies of these 
methods.

We next investigated the impact on model’s predictive 
accuracy by using the combined dataset versus using a 
single dataset. We applied the same three machine learn-
ing methods to build prediction models based on each 

Fig. 2  Heatmaps and sample clustering of the merged datasets based on A the original 18,878 features and B the 135 features charaterizing 
the pairwise relations of immune checkpoint genes

Fig. 3  ROC curves of the combined dataset for all algorithms Comparison of ROC curves among Random Forest (A), LASSO (B), and XGBoost 
(C) based on the combined dataset. Each colored dashed curve indicates one tenfold cross validation replicate. The solid black curve indicates 
the average curve across ten replicates. Results were averaged across ten tenfold cross-validations. The average area under the curve (AUC) were 
calculated over the ten replicates
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of the three individual datasets. As shown in Table 2, the 
AUC from a single dataset was lower than that from the 
combined dataset. For example, the LASSO AUCs from 
the single datasets were 0.547, 0.464, and 0.729, respec-
tively, while that from the combined dataset was 0.757. In 
addition, the ROC curves from different cross-validation 
replicates had much larger variations (Additional file  1: 
Appendix D), suggesting that the prediction performance 
of models based on a single dataset is less stable than that 
based on the combined dataset. Further, the AUCs from 
the Hugo et  al. dataset tended to be lower than those 
from the other two datasets for a given machine learn-
ing method. This is likely due to the fact that the Hugo 
et al. dataset had a smaller sample size compared to the 
other two datasets, which further demonstrates the 
importance of sample size in prediction model develop-
ment. In addition, we also considered combining the two 
datasets from Van Allen et  al. and Riaz et  al. given the 
small sample size of Hugo et al. We employed the same 
three methodologies to construct the predictive models. 
The results are shown in Additional file  1: Appendix E, 
where AUCs from the three models were 0.743, 0.704, 
and 0.689, respectively. The results indicate that combin-
ing two datasets yielded a higher AUC than using a single 
dataset, which is consistent with the findings from com-
bining three datasets.

In addition, we assessed the value of incorporating 
prior biological information and focusing on immune 
checkpoint genes. As a comparison, we applied the 
three machine learning methods and feature selec-
tion/model building procedure to the original 18,878 
gene expression features based on either a single data-
set or the combined dataset. For the combined dataset, 
the Combat normalization method had been applied 
to remove batch effect [37, 38]. Table  2 shows that 
the AUCs of those resulting models were only around 
0.5, even for using the combined dataset. Thus, those 

models based on original gene expression features 
without incorporating prior biological knowledge had 
much poorer prediction performance compared to 
models using pairwise relationships of immune check-
point genes. The result indicates that by suggesting bio-
logically relevant features and their combinations, prior 
biological knowledge can contribute to building better 
performed prediction models.

Feature selection results
We also compared the features selected by the three sta-
tistical/machine learning methods. For each method, 
the probability of a feature being selected was calculated 
based on the cross-validation procedure. Features with 
selection probabilities greater or equal to 0.2 from at least 
one of the three methods are presented in Fig. 4A. Some 
features, such as ’PD-1 > PDL-1’, ’PD-1 > CTLA4’, ’PD-1 > 
CD200R1’, ’PD-1 > TNFRSF18’, ’PD-1 > CD137L’, ’PDL-1 
> CTLA4’, ’CTLA4 > CD200R1’, ’CD80 > CD137L’, ’CD86 
> IL2RB’, tended to be selected by all the methods with 
similar probabilities, while some other features had very 
different selection probabilities for different methods. A 
table with detailed records of probabilities is provided in 
Additional file 1: Appendix A.

We further quantified the consistency in feature 
selection between each pair of methods based on the 
Spearman correlation coefficient. Results are presented 
in Fig. 4B. The two tree-based methods, random forest 
and XGBoost, had high consistency in feature selection. 
The Spearman’s correlation coefficients was around 
0.82. In contrast, the features selected by LASSO were 
very different from the tree-based methods with the 
Spearman’s correlation coefficients less than 0.1. This is 
likely due to the fact that tree-based methods focus on 
non-linear combinations while LASSO focuses on lin-
ear combinations across features.

Table 2  Summary of perdiction performance

Models were built using Random forest, Lasso, XGBoost based on the combined dataset or an individual dataset. AUCs were calculated based on tenfold cross 
validation except for the case of using the Hugo et al. dataset alone, where a fivefold cross validation was performed because the sample size of the dataset was so 
small that the tenfold validation did not yield robust result

*Data had been normalized based on the Combat method [37, 38] when merging the three datasets

Build models based on the 135 pairwise relations features of 
immune checkpoint genes

Build models based on the original 18,878 gene 
expression features

Random forest Lasso XGBoost Random forest Lasso XGBoost

AUC​ AUC​ AUC​ AUC​ AUC​ AUC​

Combined 0.728 0.757 0.667 0.595* 0.552* 0.582*

Van Allen et al. 0.723 0.547 0.607 0.410 0.444 0.446

Hugo et al. 0.559 0.464 0.445 0.671 0.559 0.322

Riaz et al. 0.711 0.729 0.622 0.568 0.441 0.447
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Discussion
We considered three frequently used statistical/
machine learning methods to construct predic-
tion models. For all three methods, models based on 
merged data had higher predictive accuracy than those 
based on individual datasets. This result suggested that 
the improved prediction performance is not sensitive 
to the choice of model construction method. We also 
noticed some difference in predictive accuracy between 
models from different machine learning methods. Fur-
ther investigation of methods’ predictive accuracy 
under different sample size settings will be needed to 
more comprehensively evaluate and compare the per-
formance of different methods for predicting ICB treat-
ment response in melanoma patients.

We focused on interactions between immune check-
point genes as candidate features and followed Aus-
lander et. al to use logical relations between the 
expression levels of pairs of immune checkpoint genes 
as candidate features to characterize interactions 
between those genes [14]. One can consider other func-
tion forms, e.g. products of expression levels of pairs 
of genes, to describe the co-stimulatory and co-inhib-
itory effects. An interesting topic for future research is 
to compare different function forms and identify more 
informative function forms to enhance prediction.

There are other factors, such as tumor heterogeneity, 
comorbidities, genetic variations, mutational burden, and 
immune cell infiltration, that could affect the response 
to ICB therapy. However, the current sample size from 
a clinical study is inadequate for creating an all-encom-
passing model for all the potential important factors. In 
fact, a primary objective of our study is to investigate the 
feasibility of combining data from multiple studies to 
increase the sample size for constructing predictive mod-
els. Nonetheless, the resultant sample size remains inad-
equate for encompassing all types of features. Therefore, 
we focused on gene expression features in this study. To 
further narrow down the numbers of features we need 
to include in the analysis, we leverage prior biological 
knowledge to only consider immune checkpoint genes 
and their interactions, which have been shown to be rele-
vant to tumor response to ICB therapy. We hope that our 
study will provide a viable approach for predictive model 
development under the practical situation where the 
sample size is limited. But we acknowledge that ignoring 
other factors, such as tumor heterogeneity, comorbidi-
ties, genetic variations, mutational burden, and immune 
cell infiltration, is a limitation of our current method. 
With the accumulation of more clinical studies on ICB 
therapy and the feasible combination across datasets as 
demonstrated in this paper, we believe that those other 

Fig. 4  Feature selection results. A Comparison of feature selection probabilities across LASSO, random forest and XGBoost. Only features 
with probability of selection larger or equal to 0.2 from at least one of the three methods are presented. B Spearman correlation of feature selection 
probabilities between each pair of methods
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factors could be incorporated in the future to improve 
the model performance.

Removing batch effect is an important task when 
merging different datasets. We showed that fea-
tures on pairwise relations between immune check-
point genes were less affected by batches compared 
to the original features. This is because the pairwise 
relation features only consider the order of expres-
sions between genes but not the quantitative expres-
sion levels. Therefore, focusing on pairwise relation 
features reduces the impact of batch effect in our 
analysis. We also tried a more traditional approach, 
ComBat [37, 38], for removing batch effect. However, 
we noticed that the ComBat adjusted expression val-
ues did not pertain the order of expressions between 
genes. Therefore, such batch effect removal may cause 
disturbance of the useful information contained in 
the original data. In addition, another problem with 
ComBat is that it requires all datasets to be analyzed 
together, where the batch effect removal modifies gene 
expression values in all the datasets. A model devel-
oped based on batch effect corrected training datasets 
cannot be directly applied to a new independent data-
set since the new dataset needs to be batch corrected 
first. But ComBat would require jointly analyzing 
the new dataset and the training datasets, where the 
expression values of not only the new dataset but also 
the training datasets will be modified. As a result, the 
prediction model will have to be re-built based on the 
modified expression values in the training datasets. 
Therefore, the generalizability of the prediction model 
based on ComBat is limited.

The ICB therapy for melanoma primarily targets cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) 
and programmed cell death protein 1 (PD-1) [27]. Both 
CTLA-4 and PD-1 binding have similar negative regu-
latory effects on the activity of T-cells. Anti-PD-1 and 
Anti-CTLA-4 immunotherapies inhibit these targets 
and prevent melanoma cells from evading the immune 
system [27]. In the literature, it has been shown that 
gene expression signatures can be generally applica-
ble to predict treatment effects of both anti-CTLA-4 
and anti-PD-1 drugs [13, 14]. Therefore, in this paper, 
we combined datasets for drugs targeting CTLA-4 and 
datasets for drugs targeting PD-1 to ensure an adequate 
sample size for model building [15–17]. In the future, 
as clinical trial data acumulate, one can possibly focus 
on trials for drugs targeting one of the two targets to 
develop target-specific gene expression signatures. It 
would be interesting to investigate whether those gene 
signatures could further improve the predictive accu-
racy of treatment effect.

Conclusion
In summary, we have demonstrated that merging data-
sets and incorporating prior biological knowledge are 
useful strategies to improve the prediction performance 
of ICB treatment using gene expression signatures. The 
batch effect could be minimized by capturing pairwise-
relation features. Classical machine learning algorithms 
were applied to the integrated datasets with features of 
pairwise relations, and demonstrated satisfactory clas-
sification performance, with AUC around 0.70. When 
compared with the model built on the single dataset, 
the result showed that the model with dataset merging 
improved and stabilized the prediction performance. In 
addition, the prediction performance of models based on 
the pairwise relations of immune checkpoint genes was 
higher than models built on the original dataset without 
incorporating prior biological knowledge. Overall, our 
finding demonstrated that merging datasets from multi-
ple studies and incorporating prior biological knowledge 
are of high value to identify ICB response biomarkers in 
future studies.
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