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Introduction
It is estimated that approximately 1 in 7 pregnant women 
develops gestational diabetes mellitus (GDM) during 
pregnancy [1]. Pregnant women with diagnosed GDM 
might require medication to control their blood sugar 
level. An uncontrolled level of blood glucose during 
pregnancy might contribute to large birth weight, pre-
term birth, pre-eclampsia, respiratory distress syndrome, 
jaundice, hypoglycemia, and stillbirth. In addition, GDM 
patients have an up to 87% risk of developing type 2 dia-
betes in 5–10 years after their delivery [2, 3]. The con-
sequences of GDM for babies include, for example, an 
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Abstract
Objective  To build and validate an early risk prediction model for gestational diabetes mellitus (GDM) based on first-
trimester electronic medical records including maternal demographic and clinical risk factors.

Methods  To develop and validate a GDM prediction model, two datasets were used in this retrospective study. One 
included data of 14,015 pregnant women from Máxima Medical Center (MMC) in the Netherlands. The other was from 
an open-source database nuMoM2b including data of 10,038 nulliparous pregnant women, collected in the USA. 
Widely used maternal demographic and clinical risk factors were considered for modeling. A GDM prediction model 
based on elastic net logistic regression was trained from a subset of the MMC data. Internal validation was performed 
on the remaining MMC data to evaluate the model performance. For external validation, the prediction model was 
tested on an external test set from the nuMoM2b dataset.

Results  An area under the receiver-operating-characteristic curve (AUC) of 0.81 was achieved for early prediction 
of GDM on the MMC test data, comparable to the performance reported in previous studies. While the performance 
markedly decreased to an AUC of 0.69 when testing the MMC-based model on the external nuMoM2b test data, close 
to the performance trained and tested on the nuMoM2b dataset only (AUC = 0.70).
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abnormally high birth weight and hypoglycemia after 
birth [4]. Various studies have demonstrated that early 
lifestyle modifications during pregnancy can have an 
effect in reducing the risk of developing GDM [5]. By 
making lifestyle adjustments (such as improving diet and 
physical activity) as early as possible in pregnancy, typi-
cally before week 15, and maintaining them throughout 
the pregnancy, this effect is enhanced [6]. Hence, to facil-
itate effective treatment and lifestyle adjustments, it is 
pivotal to accurately predict the risk of developing GDM 
early in pregnancy.

In the past decade, dozens of studies have been 
reported in the field of early risk stratification or predic-
tion of GDM using electronic medical records (EMRs) 
before its diagnosis [7, 8]. We summarized 22 EMR-based 
GDM prediction studies published since 2010 in the 
Supplementary Materials. The prediction performance, 
measured by the area under the receiver-operating-char-
acteristic curve (AUC), ranged from 0.57 to 0.95 [7–10]. 
Those studies included data from different cohorts with, 
for example, different sample size and GDM preva-
lence. Moreover, the risk factors used for GDM predic-
tion were different between studies. The most frequently 
used risk factors were body mass index (BMI), age, race 
(or ethnicity), parity, gravidity, family history of diabetes, 
and history of GDM. Although some studies considered 
biomarkers and demonstrated their good predictability 
in early prediction of GDM [11, 12], many of those bio-
markers are either not routinely measured or unavailable 
in the datasets used in our work.

In this work, we aimed at developing an early GDM 
prediction model based on the widely used maternal 
demographic and clinical risk factors available in the 
first trimester. We first performed internal validation on 
an in-house dataset and then validated the model on an 
external open-source dataset.

Materials and methods
Datasets
Two datasets were included in this retrospective study 
for model development and (internal and external) vali-
dation for GDM prediction.

The first dataset was an in-house dataset, called “MMC 
dataset”, containing data from pregnant women who vis-
ited the Máxima Medical Center (MMC), Veldhoven, the 
Netherlands, and gave birth between January 2012 and 
December 2017. The study received a waiver for ethical 
approval from the medical ethical committee of MMC. 
The inclusion criteria for the MMC dataset were preg-
nant women who delivered at MMC and had related 
obstetrical records, aged between 18 and 45 years, and 
without diagnosed type I or type II diabetes before preg-
nancy, i.e. pre-existing diabetes. In addition, for model-
ling, samples with missing data, either risk factors or 

GDM diagnosis, were excluded or imputed. A total of 
15,709 samples from 14,015 pregnant women were ana-
lyzed in our study.

The second dataset was obtained from an open-
source database called “Nulliparous Pregnancy Out-
comes Study: Monitoring Mothers-to-Be” (nuMoM2b) 
[13]. In the nuMoM2b study, 10,038 nulliparous women 
with singleton pregnancies were recruited from hos-
pitals affiliated with eight clinical centers in the USA. 
They were recruited if they had a viable singleton gesta-
tion and were between 6 and 14 weeks of gestation. The 
detailed GDM diagnosis criteria in the nuMoM2b study 
were described by Haas et al. [13]. The exclusion criteria 
for the nuMoM2b dataset were pregnant women with 
an age < 13 years, a history of three or more pregnancy 
losses, donor oocyte pregnancy, planned pregnancy ter-
mination, pre-existing diabetes, malformations likely to 
be lethal and aneuploidies known at or before enrolment, 
and inability to provide informed consent [13]. This led 
to a total of 8,720 pregnant women who were included in 
our study.

Risk factors
As stated, the most frequently used risk factors from the 
first trimester were considered for modelling. They were 
maternal demographics including age, BMI, and ethnic-
ity, as well as clinical risk factors including parity, gravid-
ity, family history of diabetes, and history of GDM. These 
risk factors are often readily available from the hospital 
EMR system, as they can more easily be collected during 
the first trimester of pregnancies compared to other vari-
ables such as biomarkers requiring a blood test or ultra-
sound-related records needing an ultrasound scan.

Prediction modelling
The seven risk factors were considered machine learning 
features for early prediction of GDM. Given the simplic-
ity and good interpretability of logistic regression (LR), it 
has been the most widely used algorithm in EMR-based 
GDM prediction [14], which motivated us to employ LR 
in our study. Elastic net regularization was applied in LR 
modelling to cope with potential collinearity and overfit-
ting issues, where several parameters were required to be 
optimized such as regularization strength C, penalty L1/
L2, and class weight.

In general, for machine learning, a dataset should be 
divided into three subsets: training, validation, and test 
sets [15]. The training set is used for model training, and 
the validation set is used for parameter optimization of 
the trained model. The test set is considered a hold-out 
set, used only for model evaluation to avoid bias. Con-
sidering both the MMC and the nuMoM2b datasets are 
highly imbalanced, simple random splitting could lead to 
significant deviations in the fractions of positive samples 
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between subsets, which may in turn leads to model dis-
tortion. Stratified split is a widely used method for imbal-
anced dataset to reduce sample bias. Because in the 
MMC dataset, some pregnant women had multiple birth 
records, it was crucial to ensure that all the records from 
same pregnant woman were always kept in the same set. 
Therefore, we used an “individual-level” stratified split on 
the MMC dataset. First, all individuals (pregnant women) 
were divided into two groups based on whether they had 
any delivery record diagnosed as GDM. Then a stratified 
method was performed on both groups of individuals to 
split the dataset into MMC-training (60%), MMC-val-
idation (20%) and MMC-test (20%) sets. The prediction 
performance (AUC) was computed for both nulliparous 
and multiparous pregnancies of the MMC-test set. In the 
nuMoM2b dataset, all participants only had one deliv-
ery record. The stratified split method was performed 
in terms of GDM diagnosis to divide the entire dataset 
into nuMoM2b-training (60%), nuMoM2b-validation 
(20%) and nuMoM2b-test (20%) sets. This ensured that 
same or similar percentages of samples for both GDM 
and non-GDM were assigned into the three subsets. For 
external validation, the LR model was trained and opti-
mized on the MMC-training and MMC-validation sets, 
while tested on the nuMoM2b-test set. Because the 
nuMoM2b cohort included only nulliparous pregnancies, 
parity, and history of GDM were set to zero. To exam-
ine the generalizability of the MMC-based model to the 

nuMoM2b dataset, we performed a comparison valida-
tion that trained and optimized an LR predictor on the 
nuMoM2b-training and nuMoM2b-validation sets, and 
tested on the nuMoM2b-test set.

To understand the feature contribution to the GDM 
prediction, feature coefficients of the LR models trained 
based on the MMC-training and the nuMoM2b-traning 
data were provided, where a higher absolute coefficient 
means a stronger contribution to the model. In addition, 
the odds ratio for each risk factor was also calculated to 
evaluate its correlation with GDM.

Results
The demographic and clinical risk factors in the MMC 
dataset and the nuMoM2b dataset are presented in 
Table 1.

The detailed statistics of the demographic and clini-
cal risk factors for the subsets after data split (includ-
ing MMC-training, MMC-validation, MMC-test, 
nuMoM2b-training, nuMoM2b-validation, and 
nuMoM2b-test) were described in the Supplementary 
Materials.

The performance of early GDM prediction using dif-
ferent datasets for training and testing is presented in 
Table 2. The internal validation showed an AUC of 0.81, 
indicating an 81% probability that a randomly selected 
patient with GDM would receive a higher risk score than 
whom without GDM in the MMC dataset. The model for 

Table 1  Demographic and clinical risk factors of pregnant women. Values are presented as mean ± standard deviation, percentage, or 
number (percentage)

MMC dataset 
(N = 15,837 from 14,015 pregnant women)

nuMoM2b dataset
(N = 8720 from 8720 pregnant women)

Outcome GDM
(N = 641, 4%)

Non-GDM
(N = 15,196, 96%)

GDM
(N = 376, 4%)

Non-GDM
(N = 8344, 96%)

Pre-pregnancy BMI# 27.83 ± 6.06** 24.31 ± 4.95 33.88 ± 7.58** 29.91 ± 6.27
Age 31.85 ± 4.82** 30.22 ± 4.51 29.54 ± 5.82** 26.81 ± 5.61
Ethnicity
 - Non-Hispanic White/Black
 - Hispanic/Mediterranean
 - Asian
 - Rest Ethnicity

493 (76.9%)**
39 (6.1%)
58 (9.0%)
51 (8.0%)

12,656 (83.3%)
617 (4.1%)
562 (3.7%)
1361 (8.9%)

205 (54.5%)*
101 (26.9%)
41 (10.9%)
20 (5.3%)

5110 (61.2%)
2511 (30.1%)
382 (4.6%)
341 (4.1%)

Parity 0: 277 (43.2%)**
1: 251 (39.1%)
2: 76 (11.8%)
>=3: 37 (5.8%)

0: 8120 (53.4%)
1: 4971 (32.7%)
2: 1501 (9.9%)
>=3: 604 (4.0%)

NA NA

Gravidity 1: 231 (36.0%)**
2: 216 (33.7%)
>=3: 194 (30.3%)

1: 6891 (45.3%)
2: 4339 (28.5%)
>=3: 3966 (27.2%)

1: 272 (72.3%)
2: 79 (21.0%)
>=3: 25 (6.6%)

1: 6217 (74.5%)
2: 1575 (18.9%)
>=3: 549 (6.6%)

Family history of diabetes 49.4%** 17.1% 35.1%** 20.0%
History of GDM 26.2%** 1.0% NA NA
NA: not applicable due to the inclusion of only nulliparous pregnancies in the nuMoM2b dataset

*p < 0.05,

**p < 0.001 between the GDM and non-GDM group
#For the nuMoM2b data, the pre-pregnancy BMI was confirmed through self-reported 3 months before pregnancy weight. For the MMC data, the pre-pregnancy 
BMI was confirmed through the self-reported non-pregnancy weight, but the specific time corresponding to this weight was not available
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external validation had a decreased AUC of 0.69, com-
parable to that obtained using the comparison model 
that was trained, validated, and tested on the nuMoM2b 
dataset (AUC = 0.70). The AUC and calibration curves for 

internal, external and comparison validation are plotted 
in Fig. 1.

In Fig. 1a and b, the absolute value of each bar repre-
sents the contribution of the feature in the model. For 
the internal validation model, ‘history of GDM’ had the 
highest contribution to the model and the highest odds 
ratio associated with GDM. The odds ratio for ‘history of 
GDM’ is 38.8, indicating that pregnant women who had 
GDM before are 38.8 times more likely to have GDM in 
a following pregnancy than those who never had GDM 
before. For the comparison validation model, the feature 
‘Age’ had the largest contribution to the model, while ‘his-
tory of GDM’ and ‘parity’ had no contribution since they 
were not available in the nuMoM2b dataset. To evaluate 
the stability of the models, mean and standard deviation 
as well as 95% confidence interval (CI) of AUC results for 
the internal, external and comparison validations were 
obtained after running 100 times with different strati-
fied (random) splits of training, validation, and test sets, 
as reported in the Supplementary Materials. The results 

Table 2  Summary of early GDM prediction performance 
(evaluated by AUC) using different datasets for training and 
testing
Training data Test data Nulliparous/

multiparous (test 
data)

Test 
AUC

MMCa MMCa All 0.81
Nulliparous 0.75
Multiparous 0.83

MMCb nuMoM2bb Nulliparous 0.69
nuMoM2bc nuMoM2bc Nulliparous 0.70
a Internal validation: 60%, 20%, and 20% of the MMC data for training, validation, 
and testing, respectively
b External validation: 60% and 20% of the MMC data for training and validation, 
respectively, and 20% of the nuMoM2b dataset for testing
c Comparison validation: 60% 20%, and 20% of the nuMoM2b data for training, 
validation, and testing, respectively

Fig. 1  a: Feature coefficient in the internal validation model. b: Feature coefficient in the comparison validation model. c: Calibration curve for internal, 
comparison, and external validation models. d: AUC curve for internal, comparison and external validation models. Bar colour in plot a and b represents 
the sign of the coefficient, where red indicates positive correlation with GDM and blue means negative correlation. Odds ratio between each feature 
and GDM was described in the rectangular brackets after the feature’s name. The odds ratio of Age, BMI, Parity, and Gravidity was calculated between 
Age > = 25 and GDM, between BMI > = 25 and GDM, between parity number > 0 and GDM, and between gravity number > 1 and GDM, respectively. Co-
lour of the dash-dot curves in plot c and d represents different models, including internal validation model (red), comparison validation models (blue), 
and external validation model (green)
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showed a relatively small standard deviation and range of 
95% CI for almost all models.

From the calibration plot, unlike the external model, 
the curves for the internal and the comparison model 
seemed to follow the perfect calibration curve relatively 
well. However, for the internal validation, the highest 
fraction of positives in the MMC-test dataset (includ-
ing both nulliparous and multiparous pregnancies) was 
about 0.36. The highest fraction of positives for the nul-
liparous pregnancies in the MMC-test set was less than 
0.2, close to that in the nuMoM2b-test set with only nul-
liparous pregnancies.

Discussion
In this study, we developed and validated models for 
GDM prediction using routinely collected risk factors 
that are available during or before the first trimester, and 
the prediction results could help provide timely medi-
cal intervention and promote early lifestyle changes to 
reduce the risk of developing GDM. In the internal vali-
dation, a major finding is that the GDM risk prediction 
for the nulliparous pregnancies was much more difficult 
than that for multiparous pregnancies, evidenced by the 
model performance measured by AUC (0.75 versus 0.83). 
This could be partially explained by the inexistence of 
pregnancy history in nulliparas. Actually, the overall con-
tribution of pregnancy history in the GDM risk predic-
tion model can be as high as 40% as reported by Artzi et 
al. [8], which corroborates our finding. In addition, we 
found that the external validation result for GDM pre-
diction was clearly lower than the internal validation 
result (AUC of 0.69 versus 0.75 for nulliparous preg-
nancies). This indicates that the model trained from the 
MMC cohort might not generalize well to another cohort 
(nuMoM2b) having a different distribution in some 
important risk factors. For example, there existed clear 
discrepancies in age, BMI, and family history of diabetes 
between the two datasets, and these factors were highly 
ranked with respect to their contribution to the predic-
tion models as shown in Table 1.

The calibration plot shows that the internal model and 
the comparison model seemed well calibrated. However, 
the external validation model that trained on the MMC-
training set tended to overestimate the risk of GDM in 
the nuMoM2b-test set, particularly for women with a 
higher GDM risk where the predicted risk was higher 
than the observed risk. This could be due to the differ-
ences in the association of the risk factors with GDM for 
different cohorts. For example, in the MMC dataset, the 
probability of pregnant women having family history of 
diabetes who eventually developed GDM was 49%, which 
was higher than that in the nuMoM2b dataset (35%). As 
shown in Fig. 1, the risk factor ‘family history of diabetes’ 
was top ranked in the LR models for both internal and 

comparison validations. In addition, in the MMC data-
set, the probability of GDM in the Mediterranean/His-
panic population was higher than the average. However, 
this was the opposite in the nuMoM2b dataset, which 
would likely cause the probability provided by the model 
in external validation to be higher than the actual prob-
ability. Donovan et al. [16] also reported that the model 
trained on nulliparous pregnant women in a California 
dataset overestimated the risk of pregnant women in a 
dataset from Iowa.

To maximize the model’s interpretability and reproduc-
ibility, this study selected LR as the algorithm for GDM 
prediction. As shown in the Supplementary Materials, LR 
showed similar results in predicting GDM compared with 
the other algorithms for internal, external, and compari-
son validations. Nonetheless, more advanced algorithms 
should be evaluated when including larger datasets with 
more risk factors in future work.

It is important to note that, both datasets are highly 
imbalanced with a minority class accounting for less than 
5% of the total samples per dataset, leading to difficulty in 
predicting GDM as the minority class, in particular when 
the GDM samples are insufficient to represent the entire 
population of GDM patients. It is worth mentioning that 
the ethnicity categories defined in both datasets used in 
this study were different. To diminish the effect caused by 
such difference, we harmonized the categories for both 
datasets in order to make them comparable, as shown in 
Table 1. Even though, we observed that, the ethnicity of 
nearly half of the pregnancies in the nuMoM2b dataset 
was American Black, while the dominant ethnicity in the 
MMC dataset was European White. In addition, unlike 
the MMC dataset collected in the Netherlands including 
both nulliparous and multiparous pregnant women, the 
nuMoM2b dataset includes only nulliparous pregnancies 
in the United States.

Limitations
The current study had several limitations. First, many 
often used risk factors that have demonstrated good pre-
dictive value such as glucose tolerant test, blood pressure, 
smoking history, polycystic ovary syndrome, daily exer-
cise, and biomarkers, were not considered during mod-
elling since these variables were not available in at least 
one of the datasets used in this study. Including more 
independent risk factors is therefore expected to further 
improve GDM prediction [17–20]. Second, the MMC 
and nuMoM2b datasets had different GDM diagnosis 
criteria as well as inclusion criteria, which would lead to 
bad model generalizability from one to the other dataset, 
regardless of the differences seen in some risk factors. 
Third, in both datasets, self-reported weight before preg-
nancy was used, where the specific time of the weight was 
unknown. For the MMC dataset, actual measurement of 
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BMI before pregnancy or during the first trimester of 
pregnancy was not always available and for many preg-
nant women, their first BMI measurement was done after 
20 weeks of gestation. These would lead to inaccuracy in 
training a GDM prediction model.
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