
R E S E A R C H N OT E Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available
in this article, unless otherwise stated in a credit line to the data.

Soibam and Roman BMC Research Notes (2024) 17:103
https://doi.org/10.1186/s13104-024-06753-4

user-friendly. Only three genotype codes are allowed
in the input genotype file for SMOOTH: ‘A’ for homo-
zygous, ‘B’ for heterozygous, and ‘U’ for missing data.
There are cases when a genotype file that contains four
genotype codes (for example recombinant lines which
are descendants of two different parents: parents 1 and
2) representing homozygous parent 1, homozygous par-
ent 2, heterozygous, and missing data. This can’t be han-
dled by SMOOTH directly because SMOOTH doesn’t
differentiate between homozygous parent 1, homozy-
gous parent 2. To run SMOOTH for such files, one can
apply SMOOTH in two different ways. One approach is
to assign homozygous parents 1 and 2 the same genotype
code ‘A’. The second approach is to treat genotype code
of one homozygous parent as missing labels and apply
SMOOTH. This will be repeated by masking the other
homozygous parent labels. These are not ideal ways to
correct genotype error or identify singletons because
the genotype codes representing the homozygosity of
the other parental map is ignored. Original SMOOTH
doesn’t generate visualizations and summary files that

Introduction
SMOOTH is a statistical method for the successful
removal of genotyping errors from high-density genetic
linkage maps [1]. In high-density genetic maps, a geno-
typing error is exhibited as a singleton [1, 2], which is a
locus with an assigned genotype different from its neigh-
boring loci. SMOOTH uses a simple statistical method
to identify singleton and this approach is still used in
current studies [3–5] before performing Quantitative
trait loci (QTL) analysis. However, SMOOTH has vari-
ous drawbacks that prevent a more user-friendly experi-
ence. The code was written in PASCAL which is not very

BMC Research Notes

*Correspondence:
Benjamin Soibam
soibamb@uhd.edu
1Department of computer science and engineering technology,
University of Houston- Downtown, Houston, TXOne Main St, 77002, USA
2Department of Biomolecular Sciences, School of Pharmacy, University of
Mississippi, 415W Faser Hall, University, Oxford, Mississippi,
MS 38677-1848, USA

Abstract
Summary  In genetic mapping studies involving many individuals, genome-wide markers such as single nucleotide
polymorphisms (SNPs) can be detected using different methods. However, it comes with some errors. Some SNPs
associated with diseases can be in regions encoding long noncoding RNAs (lncRNAs). Therefore, identifying the errors
in genotype file and correcting them is crucial for accurate genetic mapping studies. We develop a Python tool called
PySmooth, that offers an easy-to-use command line interface for the removal and correction of genotyping errors.
PySmooth uses the approach of a previous tool called SMOOTH with some modifications. It inputs a genotype file,
detects errors and corrects them. PySmooth provides additional features such as imputing missing data, better user-
friendly usage, generates summary and visualization files, has flexible parameters, and handles more genotype codes.

Availability and implementation  PySmooth is available at https://github.com/lncRNAAddict/PySmooth.

Keywords  SNPS, QTLs, SMOOTH, genotype mapping and correction

PySmooth: a Python tool for the removal
and correction of genotyping errors
Benjamin Soibam1* and Gregg Roman2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/lncRNAAddict/PySmooth
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-024-06753-4&domain=pdf&date_stamp=2024-4-10

Page 2 of 5Soibam and Roman BMC Research Notes (2024) 17:103

reports the number and locations of detected singletons.
SMOOTH assigns a score that represents the probabil-
ity that the marker is a singleton based on the genotype
calls of the marker’s neighbors. An initial threshold is
applied to the score to identify singletons. It goes through
an iterative process where in each step a new score is
assigned, and the threshold is decreased at each iteration
until a lower threshold is reached [1]. SMOOTH imple-
mentation doesn’t allow the user to test different thresh-
old values. The user must manually separate genotype
file into multiple files, each file representing a unique
chromosome.

Here, we present a Python implementation of
SMOOTH called PySmooth which offers an easy-to-use
command line interface and solves the drawbacks men-
tioned above. PySmooth reads the input genotype file and
identifies singletons based on the algorithm described in
SMOOTH with some modifications to allow four geno-
type codes, and flexible parameters. Unlike SMOOTH
which doesn’t correct the singletons and missing data,

PySmooth corrects genotype errors using a k-nearest
algorithm [6]. At each step, PySmooth generates sum-
mary files and visualizations that can be inspected by the
user for further interpretation.

Main text
Materials and methods
PySmooth was implemented in Python 3.8. The com-
mand-line interface software takes a genotype file as
input identifies singletons, and imputes missing data and
singletons based on the k-nearest neighbor algorithm [6].
Unlike SMOOTH, the user doesn’t have to create sepa-
rate genotype files for each unique chromosome. PyS-
mooth detects the unique number of chromosomes and
runs the algorithm separately on each chromosome. The
user also has the option to provide a list of chromosomes
to be processed. PySmooth primarily processes the input
file in three stages.

In the first stage, PySmooth inspects the input geno-
type file (Fig. 1A), generates a summary text file (Fig. 1B)

Fig. 1  Example files of PySmooth. (a) Example input genotype file. The first row is the header. Each subsequent row represents a unique marker. The first
three columns represent the chromosome name, location, and identification name of the marker, respectively. The fourth and fifth column represent
reference/major allele and alternate allele, respectively. These columns can be left blank if not known. A heatmap representing this genotype file is shown
in Fig. 2a. (b) Example statistics file corresponding the input genotype file. For each sample the frequency and percentage of each type of genotype call
are reported (A: homozygous 1, B: homozygous 2, H: heterozygous, U: missing). A corresponding bar plot is shown in Fig. 2d. (c) Example file indicating
the number of singletons detected. In each sample (row), the number and percentage of singletons detected (‘S_count’ and ‘S_count_perc’) are reported.
Also reported are the number of original A, B, H genotype calls which were detected as Singletons (S)

Page 3 of 5Soibam and Roman BMC Research Notes (2024) 17:103

and a bar plot that summarize the statistics of different
genotype codes in the genotype file. It also generates a
heatmap plot of the samples, where genotype codes are
uniquely color-coded (Fig. 1). In the second stage, PyS-
mooth assigns a singleton score (Si) to a marker locus i
by comparing the genotype code at locus i with genotype
codes within a defined number of loci L flanking locus i
on either side. 30 loci closest to locus i were used (15 loci
to the left and 15 to the right). Therefore, L can be writ-
ten as L = {j: j < = 15, and j ≠ i}. Singleton score (Si) to a
marker locus i is defined as:

	

∑
jL yijwj∑
jL wj

with, yij= 1 if the markers at locus i and locus j have dif-
ferent genotype codes assigned and wj are the weights
assigned to the flanking neighbors. SMOOTH uses a sim-
ilar formula to compute the singleton score but its imple-
mentation only allows three genetic codes in the input
file [1]. Same values of the weights used in SMOOTH [1]
are used in PySmooth. Like SMOOTH, a high thresh-
old of 0.99 is used to identify singletons from the single-
ton scores. It goes through a sequence of iterations with
decreasing thresholds by gap of 0.02 until 0.70 is reached.

Unlike SMOOTH, PySmooth provides the user an option
to input the thresholds and the gap allowing experimen-
tation with different values for thresholds and gap. After
the second stage where the singletons are identified, PyS-
mooth generates a new genotype file with the singletons
marked as “S” and summary file that indicates how many
of each original genotype code were switched to single-
ton “S” (Fig. 1C). A bar plot, a summary file and a heat-
map (Fig. 2) are also generated after the second stage. In
the third stage, PySmooth imputes the missing genotype
and the singleton using a k-nearest neighbor algorithm
[6] with a default value of k = 30. The user has the option
to adjust this parameter. The default value of 30 is chosen
because 30 closest neighbors are used to score singletons
in PySmooth. After the third stage, PySmooth generates
the corrected genotype file along with bar plot, heatmap,
and a summary file. The summary files generated by PyS-
mooth can be opened as excel spreadsheets and investi-
gated further by the users.

Usage and examples
PySmooth can run on windows, Linux, MacOs, and
computing cluster systems with python and required
python dependencies installed. PySmooth offers an easy-
to-use command line interface to run a complete analy-
sis through one main script called “run_smooth.py”. The

Fig. 2  Example color-coded heatmap and bar plots generated by PySmooth. (a) Color-coded heatmaps of the original genotype file from Fig. 1a. After
singletons identification by PySmooth, the heatmap is shown in (b), and after genotype correction, the heatmap is shown in (c). The heatmap in (c)
doesn’t contain singletons and missing labels. Each column in the heatmap represents a sample, the rows represent the markers. Corresponding bar plots
of original genotype file, after singletons identification, and correction are shown in (d), (e), and (f), respectively. The y-axis represents the percentage of
each genotype label in the samples. A, B, H, S, and U represent reference parent homozygous, alternate parent homozygous, heterozygous, singletons,
and missing data, respectively

Page 4 of 5Soibam and Roman BMC Research Notes (2024) 17:103

only required input to execute run_smooth.py is an input
genotype file (e.g. my_genotype.csv). All output files will
have a prefix “test” by default. To run PySmooth analy-
sis, the user can simply execute the following python
command.

python run_smooth.py -i my_genotype_file.csv

PySmooth also offers several options to control the name
of the output files, the chromosomes to be analyzed,
number of k-nearest neighbors, thresholds, and gap val-
ues for singletons identification as shown below with
options -o, -c, -l, -u, -g, -k, respectively. An example com-
mand is shown below which will generate all output files
with the prefix “my_output”.

python run_smooth.py -i my_genotype_file.csv -o my_
output -c chr1,chr2,chr3 -l 0.80 -u 0.98 -g 0.02 -k 34

The above command executes PySmooth for three chro-
mosomes chr1, chr2, and chr3, and uses the number of
k-nearest neighbors, upper threshold, lower threshold,
and gap values for singletons identification as 34, 0.98,
0.80, and 0.02 respectively.

Example input file and outputs
We tested PySmooth on an example input genotype file
named “my_genotype_file.csv” (Additional file 1). The
first, second, and third columns indicate the chromosome
name, position, and name of the marker, respectively.
The fourth and the fifth column indicates the “reference”
allele and the alternate allele, respectively. If there is no
information for these two columns, they can be left blank
or filled with “NA”. The subsequent columns indicate the
genotype calls of the samples. Four genotype codes can
be used. A, B, H, and U represent reference parent homo-
zygous, alternate parent homozygous, heterozygous, and
missing data, respectively.

If the command “python run_smooth.py -i my_geno-
type_file.csv -o my_output” is executed, since this spe-
cific input genotype file contains only one chromosome
(chr1), PySmooth generates three output summary files
(Additional file 1) that contain percentages of homozy-
gous, heterozygous calls for each individual for the raw
genotype file, after singleton detection, and after error
correction, respectively. The files not only indicate the
number of singletons detected in each sample but also the
fraction from each category of genotype calls detected as
singletons. Three bar plot files (Additional file 1), that
visualize the output summary files are also generated.
Three heatmap files (Additional file 1) are also generated
that visualize a color-coded image of different genotype
codes in the original file, after singleton detection, and
after error correction, respectively. Finally, PySmooth

also outputs the genotype file with singletons and the
final genotype file after correction of the singletons.

PySmooth versus SMOOTH
To compare the accuracy of PySmooth and SMOOTH
in predicting singletons in a genotype file, we simulated
an F2 population consisting of 120 individuals and six
chromosomes with 5720 marker locations. Using a Pois-
son distribution of λ = 1, recombination breakpoints were
introduced in the F2 population. Each marker locus was
labeled with one the three possible genotypes: ‘A’ (homo-
zygous where the allele is inherited from one parent),
‘H’ (heterozygous locus with alleles from both parents),
and ‘B’ (alternative homozygous locus where the allele
is inherited from the other parent). Errors and missing
values were introduced to the genotype file that repre-
sent the F2 population by randomly mislabelling 20% of
the loci and marking another 10% of the loci as missing.
PySmooth and SMOOTH were both applied to the same
genotype file that contains errors and missing values.
Two metrics were computed: percentage of introduced
errors which were correctly predicted as singletons and
percentage of correctly labeled loci which were incor-
rectly predicted as singletons. An accurate tool should
have a higher and lower value of the first and the second
metric, respectively. We found that PySmooth achieved
superior accuracy by correctly predicting 96.64% of the
introduced errors as singletons compared to 73.32% by
SMOOTH. PySmooth predicted only 0.03% of the cor-
rect genotype labels as singletons compared to 24%
misprediction by SMOOTH. When the error rate was
increased to 30%, PySmooth was able to recover 82.47%
of the introduced errors as singletons compared to 68%
by SMOOTH. These results show that PySmooth per-
forms better than SMOOTH.

Limitations
Our tool PySmooth offers several improvements over
the SMOOTH tool by allowing a user-friendly command
interface, summary and visualization files, more geno-
type codes, flexible parameters, and correcting genotype
errors.

The main limitation of the current version of PySmooth
is the lack of the feature of parallel processing to reduce
computation time in large genotype files. One can lever-
age multiple cores and process different chromosomes
simultaneously to reduce computation time. However,
this can be overcome manually with the current version
of PySmooth. Users can execute PySmooth in computing
clusters or systems with multiple cores for different chro-
mosomes simultaneously in parallel to reduce computing
time. For this, the user must manually create different
files that correspond to different chromosomes and exe-
cute PySmooth on these files separately. In the future

Page 5 of 5Soibam and Roman BMC Research Notes (2024) 17:103

version of PySmooth, an automated multi-core process-
ing feature will be incorporated.

There is only feature of the marker in a genotype file
which is its position. In the genotype file, markers which
are close to each other will most likely have the same
genotype call. Therefore, K-nearest neighbor was used to
impute missing data because of its reliance on distance
between data points. In future versions of PySmooth, we
plan to add more methods which the user can choose
from.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13104-024-06753-4.

Additional file 1

Acknowledgements
Not applicable.

Author contributions
Implementation of software, writing, data analysis, manuscript writing and
editing: B.SProject conception, overall direction of the project, writing, editing:
B.S and GWR. All authors reviewed the manuscript.

Funding
This work was supported by the National Science Foundation grant number
NSF 2135305 to GWR and partially supported by National Institute of
General Medical Sciences of the National Institutes of Health, grant number
R15GM137254 to BS.

Data availability
PySmooth is available at https://github.com/lncRNAAddict/PySmooth.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 16 August 2023 / Accepted: 22 March 2024

References
1.	 van Os H, Stam P, Visser RGF, van Eck HJ. SMOOTH: a statistical method for

successful removal of genotyping errors from high-density genetic linkage
data. Theor Appl Genet. 2005;112:187–94.

2.	 Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, et al. Construction and analysis
of high-density linkage map using high-throughput sequencing data. PLoS
ONE. 2014;9:e98855.

3.	 Guo Z-H, Ma P-F, Yang G-Q, Hu J-Y, Liu Y-L, Xia E-H, et al. Genome sequences
provide insights into the Reticulate Origin and Unique traits of Woody Bam-
boos. Mol Plant. 2019;12:1353–65.

4.	 Wei Q, Wang W, Hu T, Hu H, Wang J, Bao C. Construction of a SNP-Based
genetic map using SLAF-Seq and QTL analysis of morphological traits in
Eggplant. Front Genet. 2020;11.

5.	 Ma A, Huang Z, Wang X-A, Xu Y, Guo X. Identification of quantitative trait
loci associated with upper temperature tolerance in turbot, Scophthalmus
maximus. Sci Rep. 2021;11:21920.

6.	 Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory.
1967;13:21–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s13104-024-06753-4
https://doi.org/10.1186/s13104-024-06753-4
https://github.com/lncRNAAddict/PySmooth

	﻿PySmooth: a Python tool for the removal and correction of genotyping errors
	﻿Abstract
	﻿Introduction
	﻿Main text
	﻿Materials and methods
	﻿Usage and examples
	﻿Example input file and outputs
	﻿PySmooth versus SMOOTH
	﻿Limitations

	﻿References

